Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Measurement of Thermoelectric Properties of Single Semiconductor Nanowires

Identifieur interne : 000920 ( Main/Repository ); précédent : 000919; suivant : 000921

Measurement of Thermoelectric Properties of Single Semiconductor Nanowires

Auteurs : RBID : Pascal:13-0305109

Descripteurs français

English descriptors

Abstract

We have measured the thermopower and the thermal conductivity of individual silicon and indium arsenide nanowires (NWs). In this study, we evaluate a self-heating method to determine the thermal conductivity λ. Experimental validation of this method was performed on highly n-doped Si NWs with diameters ranging from 20 nm to 80 nm. The Si NWs exhibited electrical resistivity of ρ = (8 ± 4) mΩ cm at room temperature and Seebeck coefficient of -(250 ± 100) μV/K. The thermal conductivity of Si NWs measured using the proposed method is very similar to previously reported values; e.g., for Si NWs with 50 nm diameter, λ = 23 W/(m K) was obtained. Using the same method, we investigated InAs NWs with diameter of 100 nm and resistivities of ρ = (25 ± 5) mΩ cm at room temperature. Thermal conductivity of λ = 1.8 W/(m K) was obtained, which is about 20 to 30 times smaller than in bulk InAs. We analyzed the accuracy of the self-heating method by means of analytical and numerical solution of the one-dimensional (1-D) heat diffusion equation taking various loss channels into account. For our NWs suspended from the substrate with low-impedance contacts the relative error can be estimated to be ≤25%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0305109

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Measurement of Thermoelectric Properties of Single Semiconductor Nanowires</title>
<author>
<name sortKey="Karg, S" uniqKey="Karg S">S. Karg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mensch, P" uniqKey="Mensch P">P. Mensch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gotsmann, B" uniqKey="Gotsmann B">B. Gotsmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmid, H" uniqKey="Schmid H">H. Schmid</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das Kanungo, P" uniqKey="Das Kanungo P">P. Das Kanungo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghoneim, H" uniqKey="Ghoneim H">H. Ghoneim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, V" uniqKey="Schmidt V">V. Schmidt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bjork, M T" uniqKey="Bjork M">M. T. Björk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>QuNano AB</s1>
<s2>22370 Lund</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>QuNano AB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Troncale, V" uniqKey="Troncale V">V. Troncale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riel, H" uniqKey="Riel H">H. Riel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8803 Rüschlikon</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0305109</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0305109 INIST</idno>
<idno type="RBID">Pascal:13-0305109</idno>
<idno type="wicri:Area/Main/Corpus">000725</idno>
<idno type="wicri:Area/Main/Repository">000920</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical solution</term>
<term>Diffusion equation</term>
<term>Electric resistivity</term>
<term>Electrical conductivity</term>
<term>Heat treatments</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Nitrogen additions</term>
<term>Scattering theory</term>
<term>Seebeck effect</term>
<term>Silicon</term>
<term>Thermal conductivity</term>
<term>Thermal properties</term>
<term>Thermoelectric properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété thermoélectrique</term>
<term>Semiconducteur III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Propriété thermique</term>
<term>Conductivité thermique</term>
<term>Silicium</term>
<term>Arséniure d'indium</term>
<term>Composé III-V</term>
<term>Traitement thermique</term>
<term>Addition azote</term>
<term>Résistivité électrique</term>
<term>Effet Seebeck</term>
<term>Conductivité électrique</term>
<term>Solution analytique</term>
<term>Théorie diffusion</term>
<term>Equation diffusion</term>
<term>7220P</term>
<term>7350L</term>
<term>8105E</term>
<term>8107V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have measured the thermopower and the thermal conductivity of individual silicon and indium arsenide nanowires (NWs). In this study, we evaluate a self-heating method to determine the thermal conductivity λ. Experimental validation of this method was performed on highly n-doped Si NWs with diameters ranging from 20 nm to 80 nm. The Si NWs exhibited electrical resistivity of ρ = (8 ± 4) mΩ cm at room temperature and Seebeck coefficient of -(250 ± 100) μV/K. The thermal conductivity of Si NWs measured using the proposed method is very similar to previously reported values; e.g., for Si NWs with 50 nm diameter, λ = 23 W/(m K) was obtained. Using the same method, we investigated InAs NWs with diameter of 100 nm and resistivities of ρ = (25 ± 5) mΩ cm at room temperature. Thermal conductivity of λ = 1.8 W/(m K) was obtained, which is about 20 to 30 times smaller than in bulk InAs. We analyzed the accuracy of the self-heating method by means of analytical and numerical solution of the one-dimensional (1-D) heat diffusion equation taking various loss channels into account. For our NWs suspended from the substrate with low-impedance contacts the relative error can be estimated to be ≤25%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Measurement of Thermoelectric Properties of Single Semiconductor Nanowires</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2012 International Conference on Thermoelectrics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KARG (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MENSCH (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GOTSMANN (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHMID (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DAS KANUNGO (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GHONEIM (H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SCHMIDT (V.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BJÖRK (M. T.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>TRONCALE (V.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>RIEL (H.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>FUNAHASHI (Ryoji)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MORELLI (Donald)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ROSENDAHL (Lasse)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YANG (Jihui)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>IBM Research-Zurich, Säumerstrasse 4</s1>
<s2>8803 Rüschlikon</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>QuNano AB</s1>
<s2>22370 Lund</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>International Thermoelectric Society</s1>
<s3>INT</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Aalborg University. Department of Energy Technology</s1>
<s2>Aalborg</s2>
<s3>DNK</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>2409-2414</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000503662781770</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0305109</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have measured the thermopower and the thermal conductivity of individual silicon and indium arsenide nanowires (NWs). In this study, we evaluate a self-heating method to determine the thermal conductivity λ. Experimental validation of this method was performed on highly n-doped Si NWs with diameters ranging from 20 nm to 80 nm. The Si NWs exhibited electrical resistivity of ρ = (8 ± 4) mΩ cm at room temperature and Seebeck coefficient of -(250 ± 100) μV/K. The thermal conductivity of Si NWs measured using the proposed method is very similar to previously reported values; e.g., for Si NWs with 50 nm diameter, λ = 23 W/(m K) was obtained. Using the same method, we investigated InAs NWs with diameter of 100 nm and resistivities of ρ = (25 ± 5) mΩ cm at room temperature. Thermal conductivity of λ = 1.8 W/(m K) was obtained, which is about 20 to 30 times smaller than in bulk InAs. We analyzed the accuracy of the self-heating method by means of analytical and numerical solution of the one-dimensional (1-D) heat diffusion equation taking various loss channels into account. For our NWs suspended from the substrate with low-impedance contacts the relative error can be estimated to be ≤25%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50L</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété thermoélectrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermoelectric properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Conductivité thermique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thermal conductivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition azote</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nitrogen additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Résistivité électrique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electric resistivity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Seebeck effect</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Solution analytique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Analytical solution</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Théorie diffusion</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Scattering theory</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Equation diffusion</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Diffusion equation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ecuación difusión</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7220P</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7350L</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8105E</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Thermoelectrics</s1>
<s3>Aalborg DNK</s3>
<s4>2012-07-09</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0305109
   |texte=   Measurement of Thermoelectric Properties of Single Semiconductor Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024